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Abstract

When there are insufficient labeled samples for train-
ing a supervised model, we can adopt active learning
to select the most informative samples for human label-
ing, or transfer learning to transfer knowledge from
related labeled data source. Combining transfer learn-
ing with active learning has attracted much research in-
terest in recent years. Most existing works follow the
setting where the class labels in source domain are the
same as the ones in target domain. In this paper, we fo-
cus on a more challenging cross-class setting where the
class labels are totally different in two domains but re-
lated to each other in an intermediary attribute space,
which is barely investigated before. We propose a novel
and effective method that utilizes the attribute represen-
tation as the seed parameters to generate the classifica-
tion models for classes. And we propose a joint learn-
ing framework that takes into account the knowledge
from the related classes in source domain, and the in-
formation in the target domain. Besides, it is simple to
perform uncertainty sampling, a fundamental technique
for active learning, based on the framework. We con-
duct experiments on three benchmark datasets and the
results demonstrate the efficacy of the proposed method.

Introduction
Sometimes, it is expensive and exhaustive to label sufficient
samples for training a classifier. For example, training ob-
ject classifiers for natural images from thousands of cate-
gories may require millions of well-labeled samples (Lam-
pert, Nickisch, and Harmeling 2014). It is expected that we
can use as few labeled samples as possible to train a clas-
sifier which can achieve satisfactory performance. The re-
searchers have exploited two lines to achieve this goal. The
first line is active learning (Settles 2009). The basic idea
of active learning is that training samples have different in-
formation, and if the learning algorithm can, and is allowed
to, select the most informative samples to label, even a few
labeled samples can lead to an effective classifier. Existing
works have demonstrated that active learning can signifi-
cantly reduce the human labeling efforts (Joshi, Porikli, and
Papanikolopoulos 2009; Zhuang et al. 2012). The second
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line is transfer learning (Pan and Yang 2010). In transfer
learning, an auxiliary domain is available which is always
fully labeled. It is related but not the same as the target do-
main. So we can transfer the supervised information in aux-
iliary domain into the target domain. By alleviating the in-
fluence of marginal and conditional distribution difference
between domains, it is demonstrated that we can train accu-
rate classifiers without labeled target data (Long et al. 2014).

The power of active learning and transfer learning moti-
vates researchers to develop methods to combine them for
better performance. By simultaneously transferring knowl-
edge from auxiliary labeled domain and selecting the most
informative samples from target domain to label, a.k.a.,
transfer active learning, some promising results have been
achieved (Shi, Fan, and Ren 2008; Li et al. 2012; 2013;
Chattopadhyay et al. 2013; Zhao et al. 2013). However, ex-
isting works assume that the source domain and target do-
main must have the same classes, while little attention is
paid to the more general and challenging case where the
classes in source domain are related but different from target
domain classes, i.e., cross-class transfer active learning. In
fact, the cross-class problem is more practical in real-world
scenario. For example, if the target domain contains hun-
dreds of uncommon classes, such as “lophius litulon” and
“euchoreutes naso”, it is very difficult to collect auxiliary
data for all classes exactly and not miss any class. On the
other hand, collecting data for common classes, like “fish”
and “mouse” is very easy. Therefore if the learning algo-
rithm can transfer knowledge from the common classes in
source domain to the uncommon ones in target domain, the
effort to collect the auxiliary data can be markedly reduced.

There are two key problems in cross-class transfer active
learning. Firstly, because the source domain and target do-
main do not directly share any class, how to transfer knowl-
edge between different classes? Secondly, how to measure
the uncertainty of samples in this task so that the learn-
ing algorithm can select samples for labeling? The recent
development of attribute-based zero-shot learning (Farha-
di et al. 2009; Socher et al. 2013; Norouzi et al. 2013;
Lampert, Nickisch, and Harmeling 2014) shows that by
building an intermediary layer shared between source do-
main and target domain, i.e., attributes, the knowledge can
be transferred across classes. Following this idea, in this pa-
per we propose a novel usage of attributes. Instead of treat-



ing attributes as the intermediate during classification, we re-
gard attributes as the seed parameters to build the classifier.
Specifically, we assume there is a generating function shared
among classes which takes the attributes of a class as input
and generates the classifier for this class. By using attributes
in this way, the knowledge can be transferred from source
domain to target domain with the generating function, and
explicit classification models are constructed such that we
can measure the uncertainty of a sample by the outputs of
classifiers as in conventional active learning. Thus the two
problems are addressed by the proposed method. Besides,
we propose a joint optimization framework which simulta-
neously takes the information from source domain and target
domain into consideration for better performance. In this pa-
per, we make three important contributions listed as follows.

• We study a challenging and practical problem, cross-class
transfer active learning where the source and target do-
mains have related but totally different classes. To our best
knowledge, our work is the first attempt to enhance active
learning by transferring knowledge from different classes.

• We propose a novel method for cross-class transfer active
learning. We utilize the attributes shared between source
and target domains as the seed parameters to generate the
classifiers. Based on this method, the knowledge can be
transferred between domains. Besides, the uncertainty of
a sample can be easily measured by using these classifiers.

• We carry out extensive experiments on three benchmark
datasets. The experimental results demonstrate that the
proposed method can significantly reduce the labeling ef-
forts in comparison to traditional active learning methods.

Related Work
Transfer Active Learning
Transfer active learning is a combination of transfer learning
and active learning. It simultaneously transfers knowledge
from related source domain that are fully labeled and selects
the most informative unlabeled samples in target domain for
human labeling. By transferring knowledge from source do-
main, the labeling efforts in target domain can be reduced.
In (Shi, Fan, and Ren 2008), the knowledge transferred from
source domain is used as often as possible and the human la-
beling is triggered only when necessary. The likelihood that
a sample in target domain can be correctly classified is esti-
mated using the knowledge from source domain. The human
labeling is requested when the likelihood for all unlabeled
samples is low. In (Li et al. 2012), the shared common la-
tent space between domains is learned from data. The active
learning is performed in the latent space such that the knowl-
edge from source domain can be utilized. In (Chattopadhyay
et al. 2013), an integrated framework that solves a convex
optimization problem is proposed. This framework simulta-
neously re-weights the source domain samples and selects
the target domain samples to minimize a common objective
of reducing distribution difference between domains. In (Li
et al. 2013), a disjointed learning framework is proposed.
Two individual classifiers are learned on source and target
domains respectively. The prediction is made based on the

decisions from both classifiers and the Query by Committee
is adopted as selection strategy. In (Zhao et al. 2013), trans-
fer active learning is utilized for recommendation system by
actively identifying entity-correspondences across systems.

Existing works have demonstrated the effectiveness of
transfer active learning. However, they all make a strong as-
sumption that the source domain and target domain have the
same classes. In real-world applications, it is expected that
we can transfer knowledge across classes to reduce labeling
efforts. However, existing works fail to handle this problem.

Attribute-based Zero-shot Learning
Zero-shot learning is to construct models for classes with-
out any labeled data. To achieve this goal, the knowledge
from some other related classes that are fully labeled is u-
tilized. Specifically, some attributes shared between class-
es are used as the bridge for knowledge transfer, which
is called attribute-based zero-shot learning (Farhadi et al.
2009; Yu et al. 2013; Socher et al. 2013; Norouzi et al. 2013;
Lampert, Nickisch, and Harmeling 2014). Take animal clas-
sification as an example. We can define some attributes, such
as “black”, “stripes” and “water”. Then the attribute repre-
sentation for each class (both source and target domain) can
be constructed by considering the relationship between class
and attributes. By using the labeled data in source domain,
the attribute classifier can be trained for each attribute. Be-
cause the attributes are shared between classes, the attribute
classifiers trained in source domain also work in target do-
main. For example, a classifier for attribute “stripes” trained
with “zebra” and “bear” can also handle images from “tiger”
and “bird”. For target domain, we can use the attribute clas-
sifiers to generate the attribute representation for each im-
age. Finally, the class label is predicted by comparing the
similarity between the attribute representation of the test im-
age and all classes in target domain. For example, if a test
image is classified as having attributes “stripes”, “four legs”,
“furry”, and not “water”, it is more likely to be a tiger than
a bird or fish. Therefore, by taking advantage of attributes
as the intermediary level, the knowledge can be effectively
transferred between different classes. Furthermore, with the
recent development of word vector (Turney and Pantel 2010;
Huang et al. 2012; Mikolov et al. 2013), it is very easy to ob-
tain the intermediary attribute representation for each class.

Attribute-based methods adopt the two-step strategy to
transfer knowledge via attributes. However, the two-step s-
trategy may leads to information loss, and the classification
performance highly relies on the attribute classifiers that are
unreliable in some cases (Jayaraman and Grauman 2014).
Besides, it is unclear how to measure the uncertainty based
on existing attribute based methods. Hence, how to combine
attribute with active learning is an unexplored research issue.

The Proposed Method
Problem Definition and Notation
In this paper, we consider the cross-class transfer active
learning problem. We have a set of fully labeled samples
from source domain Ds = {(xi,yi)}ns

i=1, where xi ∈ Rd



Table 1: Notations and descriptions in this paper.

Notation Description Notation Description
Xs,Xt features ns, nt #samples
Ys,Yt label matrix d #dimension
As,At attribute matrix m #attributes
Ws,Wt classifiers cs, ct #classes
Θs,Θt weights f, g functions

V factors α, β parameters

is the feature and yi ∈ {0, 1}cs is the corresponding la-
bel vector. The source domain samples belong to cs class-
es Cs = {Cs

j }
cs
j=1. We have yij = 1 if image i belongs

to class Cj or 0 otherwise. We also have a set of unlabeled
training samples from target domain Dtr

t = {(xi,yi)}ntr
i=1

where the label vector yi is unknown unless this sample is
selected for human labeling. And there are a set of test sam-
ples Dte

t = {(xi,yi)}nte
i=1 in target domain which are sam-

pled from the same distribution as Dtr
t . The test set Dte

t is
not available for training. The target domain samples belong
to ct classes Ct = {Ct

j}
ct
j=1. Our goal is to select as few

samples from Dtr
t as possible for human labeling to train a

classifier that can achieve satisfactory performance on Dte
t .

Different from existing transfer active learning that assumes
Cs = Ct, in this paper we consider a more general and chal-
lenging setting where Cs ∩ Ct = ∅. Besides, for any class
cj ∈ Cs ∪ Ct, we have the attribute representation aj ∈ Rm

for it which describe the characteristics of the class. Besides,
this paper focuses on the multi-class single-label classifica-
tion problem, i.e., there is only one “1” in each yi and the
others are all “0”. The notations are summarized in Table 1.

Cross-class Transfer Active Learning
Given a set of labeled training samples, the multi-class clas-
sifiers is learned by optimizing the objective function below,

min
fc

∑
xi

∑
c

`(fc(xi), yic) +R(fc) (1)

In this paper, we consider the one-vs-the-rest classifier for
multi-class classification because of its high classification
efficiency and good performance (Fan et al. 2008). Here, fc
is the classifier for class c, `(a, b) is the loss function, andR
is the regularization term for classifier parameters. Besides,
the prediction of the single-label classification is obtained by

c(x) = argmaxcfc(x) (2)

In active learning, the uncertainty of an unlabeled sample x
is computed using the outputs of all classifiers, i.e., we have

u(x) = u(f1(x), ..., fc(x)) (3)

Then the samples with the largest uncertainty are selected
for human labeling. We can perform active learning only
in the target domain. Besides, we can observe from Eq. (1)
that the classifier for each class can be learned individually.
However, the knowledge in source domain is wasted in both
situations. Motivated by attribute-based zero-shot learning,
we can utilize attribute as the bridge for knowledge transfer.

Source Domain

Target Domain

Fox 1 0 0 1 0

Cow 1 1 1 0 0

Lion 0 1 1 1 0

Seal 0 0 0 0 1

Dog 1 1 0 0 1

… … … … … …

Class-attribute Matrix

Generating 
Function

( )

Classifiers
Actively 
Labeling

Figure 1: Cross-class transfer active learning.

In this paper, we consider the linear classifiers, i.e., we
have fc(x) = xw′c, where wc ∈ Rd is the classifier pa-
rameters. By Eq. (1), we can obtain the classifiers for source
domain classes. However, because we lack the label infor-
mation for target domain classes, we can not directly use Eq.
(1) for training. In this paper, we propose to learn a gener-
ating function g that can generate the classifiers given some
seed parameters. In fact, one can imagine that the classifi-
er parameters of a class are determined by the properties of
the class. Thus given a property description of a class, it is
reasonable to assume that there is a transformation function
that turns the properties into classifier parameters. Motivated
by the success of attribute classification (Socher et al. 2013;
Lampert, Nickisch, and Harmeling 2014), we can adopt at-
tributes to characterize the properties of the classes. There-
fore, the classifier parameters for class c can be constructed
by the attributes and the generating function as wc = g(ac).

Based on this idea, we illustrate our method in Figure 1.
The key in our method is the generating function g. To learn
it, we can use the labeled data in source domain Ds and the
training data in target domain Dtr

t . Then with the attributes
of target domain classes, we can directly generate the clas-
sifiers for target domain, which is an important difference
between our method and attribute-based learning methods.
Because the classifiers are all available, it is straightforward
to measure uncertainty of any samples in Dtr

t and perform
selection and human labeling in active learning. We can it-
erate these steps until satisfactory performance is achieved.
With the generating function and attributes as bridge, the
knowledge from source domain classes can be transferred
across classes into target domain classes and thus the label-
ing efforts in the active learning can be observably reduced.

Learning Generating Function In order to learn the gen-
erating function g, we can use the labeled data in Ds and
Dtr

t . Besides, based on the theory of semi-supervised learn-



ing (Zhu and Goldberg 2009), considering the unlabeled
data in training set can lead to better classification perfor-
mance (Li et al. 2013; Rohrbach, Ebert, and Schiele 2013).
Thus, the learning objective for g can be presented as below,

min
g,Yt

∑
xs∈Ds

∑
c∈Cs

`(xs(g(ac))
′, ysic)

+ α(
∑
j∈L

∑
c∈Ct

θj`(x
t
j(g(ac))

′, ytjc)

+
∑
j∈U

∑
c∈Ct

θj`(x
t
j(g(ac))

′, ytjc)) +R(g(a))

s.t. yt
j is fixed, ∀j ∈ L; ‖yt

j‖0 = yt
j1
′
ct = 1, ∀j ∈ U

(4)

where α is a hyper parameter, L is the labeled set inDtr
t and

U is the unlabeled set, θi is the weight for the sample xt
i,

and ‖ · ‖0 denotes the `0-norm of a vector. One may argue
that we can learn g with onlyDs. However, learning g in this
way only considers the information from source domain. S-
ince our ultimate goal is to build classifiers in target domain,
we also incorporate the information from the target domain,
both labeled and unlabeled, into the objective function for g.

We formulate the learning objective to be general such
that one can choose specific settings based on the specific
requirement. In this paper, we adopt the linear function for
g, i.e., g(a) = aV′, where V ∈ Rd×m is the factor for
the generating function. Although the linear function seems
quite simple, we find out that it works quite well. We leave
the other forms for g to our future research. In addition, we
use the squared loss for ` and the ridge regularization forR.
Now we can write the specific objective function as follows,

min
V,Yt

‖XsVA′s −Ys‖2F + α‖X̂tVA′t − Ŷt‖2F + β‖VA′‖2F

s.t. yt
j is fixed, ∀j ∈ L; ‖yt

j‖0 = yt
j1
′
ct = 1, ∀j ∈ U (5)

where X̂t = ΘtXt and Ŷt = ΘtYt are the re-weighted
samples, Θt = diag(θ

1
2
1 , ..., θ

1
2
nt) represents the weighting

matrix, ‖ · ‖F denotes the Frobenius norm of matrix, and β
is the hyper parameter to control model complexity. We can
see that V appears in both source and target domains. Thus
it can bridge domains and transfer knowledge across classes.

To solve Eq. (5) that has two matrix variables, we can
adopt an iterative strategy which fixes one variable when op-
timizing the other. Specifically, when Yt is fixed, we simpli-
fy and approximate the objective function w.r.t. V as below,

min
V
OV = ‖XVA′ −Y‖2F + β‖VA′‖2F (6)

The notations in the above formulation are defined as below,

X = [Xs;
√
αX̂t],Y =

[
Ys 0ns×ct

0nt×cs
√
αŶt

]
,A = [As;At]

Then the derivative of OV w.r.t. V is calculated as follows,

∂OV

∂V
= 2X′XVA′A− 2X′YA + 2βVA′A (7)

By setting the derivative to 0, we obtain the solution for V,

V← (X′X + βId)
−1X′YA(A′A)−1 (8)

On the other hand, if we keep V fixed, we can observe
that the optimization problem is row-wise decoupled w.r.t.
yt
j (∀j ∈ U), and each subproblem can be written as follows,

min
yt
j

‖xt
jVA′t − yt

j‖2F s.t. ‖yt
j‖0 = yt

j1
′
ct = 1 (9)

Solving the above problem leads to the updating rule below,

ytjc =

{
1, if c = argmaxcx

t
jVat′

c

0, otherwise
(10)

which is the explicit formulation for Eq. (2). Because we
have no label information for unlabeled data, the predicted
labels by Eq. (10) are the pseudo labels. In fact, more ac-
curate pseudo labels can lead to better V and vice versa.
Thus we can iteratively update V and Yt to gradually refine
the pseudo labels and models until convergence (Long et al.
2013). Then we obtain the classifiers which contain knowl-
edge from the source domain classes for the target domain
classes by using the generating function g and the attributes.

Uncertainty Sampling Based on the classifiers obtained
above, we can perform uncertainty sampling. In this paper,
we adopt the Best-vs-Second Best strategy for multi-class
uncertainty sampling (Joshi, Porikli, and Papanikolopoulos
2009). Specifically, based on Eq. (10), for sample xt

j , the
output of classifier fc is ojc = xt

jVa′c which is similar to
the distance between xt

j and the hyperplane Va′c (Tong and
Koller 2001). Suppose ojc1 and ojc2 are the largest and sec-
ond largest outputs. Because the outputs may be negative,
we can not use entropy to measure the uncertainty. But we
can observe that if there is large difference between ojc1 and
ojc2 , the sample is classified as c1 with high confidence, i.e.,
it has less uncertainty. On the other hand, if the difference
is very small, the sample also has high probability to be c2
even though it is classified as c1, i.e., we are uncertain about
the classification. Thus, it is reasonable to use the difference
between ojc1 and ojc2 to measure the uncertainty as follows

u(xt
j) = eojc2−ojc1 (11)

Here we use the exponential function to make the value posi-
tive. Then we can select samples with the largest uncertainty
for human labeling. Besides, since we focus on the multi-
class problem, it is not expected that the selected samples in
one iteration belong to the same class, which may result in
redundancy. In this paper, we propose to perform the class-
wise sampling. Specifically, for each class c, we only con-
sider the samples classified as c by Eq. (10), i.e., ytjc = 1.
And we use Eq. (11) to select k samples for human labeling.
Therefore in each iteration ctk samples are selected in total.

Other Issues To learn V by Eq. (8), we need to know the
pseudo labels Yt that are generated by Eq. (10) using V,
which is a “chicken or the egg” dilemma. To initialize Yt,
we can adopt any existing zero-shot learning method (Lam-
pert, Nickisch, and Harmeling 2014; Jayaraman and Grau-
man 2014). In this paper, we initialize V by using the source
domain samples and then generate the initial Yt by Eq. (10).
Then we can iteratively refine them as we introduced above.



Algorithm 1 Cross-class Transfer Active Learning
Input: Source samples Xs; Source labels Ys;

Target samples Xt; Parameters α and β;
Source attributes As; Target attributes At;
#iterations T ; #selected samples for each class k;

Output: Classifiers wc for target domain, c = 1, ..., ct;
1: Initialize V using source domain samples;
2: Initialize Yt by Eq. (10);
3: Initialize U = {1, ..., nt}, L = ∅;
4: for iter = 1 : T do
5: for c = 1 : ct do
6: Select samples with ytjc = 1, j ∈ U ;
7: Calculate u(xt

j) by Eq. (11);
8: Select S = {jl}kl=1 with the largest uncertainty;
9: L = L ∪ S , U = U\S; // Actively labeling

10: end for
11: Update Θ by Eq. (12);
12: repeat
13: Update V by Eq. (8); // Knowledge transfer
14: Update ytjc by Eq. (10), j ∈ U ;
15: until Convergence;
16: end for
17: Return wc = acV

′, c = 1, ..., ct;

Another issue is the weights for all samples in target do-
main. A simple solution is to set all weights to 1. But this
strategy may assign too much weight to very uncertain sam-
ples, which may degrade the performance. Thus we should
set the weight based on the uncertainty of a sample, such as

θj =
1

1 + δu(xt
j)

(12)

where δ is a scale factor and we set δ = 1/median(Θt) such
that it is updated in each iteration. Based on this definition,
the weights for certain samples are close to 1 while for un-
certain samples are close to 0. Besides, we set θj = 1 for la-
beled samples in target domain. We summarize our method
for the cross-class transfer active learning into Algorithm 1.

Experiment
Settings
Datasets To demonstrate the effectiveness of the pro-
posed method, we carry out experiments on three bench-
mark datasets with attributes. The first dataset is Animal
with Attributes (AwA) (Lampert, Nickisch, and Harmeling
2014). This dataset has 30, 475 images belonging to 50 an-
imal categories, such as “dog”, “dolphin”, “bear”, and so
on. For each class, an 85-dimensional attribute represen-
tation is given which contains “brown”, “water”, and etc.
This dataset provides a standard source/target split where 40
classes with 24, 295 samples are in source domain and 10
classes with 6, 180 samples are in target domain. For this
dataset, each image is represented by a 4, 096-dimensional
deep features extracted by DeCAF (Donahue et al. 2014)
without fine-tuning. The second dataset is aPascal-aYahoo
(aPY) (Farhadi et al. 2009). This dataset contains two sub-
sets. The first subset is aPascal from PASCAL VOC2008

Table 2: The statistics of datasets.
AwA aPY SUN

#source class 40 20 707
#source sample 24, 295 12, 695 14, 140
#target class 10 12 10
#target sample 6, 180 2, 644 200

#attribute 85 64 102
#dimension 4, 096 4, 096 17, 032

challenge that has 12, 695 samples from 20 different cate-
gories like “people” and “dog”. The second subset is aYa-
hoo which is collected from Yahoo image search. aYahoo
has 12 categories with 2, 644 images that are similar but dif-
ferent from the categories in aPascal, such as “centaur” and
“wolf”. In aPY, we follow the standard setting where aPascal
works as the source domain and aYahoo is the target domain.
In this dataset, each image is annotated by 64 binary at-
tributes, such as “furry” and “pot”. We average the attribute
representations of images in the same category to generate
the class attribute representation. We also use DeCAF to
extract a 4, 096-dimensional deep features for each image.
The third dataset is the SUN fine-grained scene recognition
dataset (Patterson and Hays 2012). This dataset contains 717
different scenes such as “airport”, “palace”, and etc. There
are totally 14, 340 images in this dataset and each class has
20 images. Following the source/target split in (Jayaraman
and Grauman 2014), 707 classes form the source domain
and the other 10 classes form the target domain. For each
image, 102-dimensional binary attributes annotated by hu-
man are given which includes “natural”, “open”, and etc.
We average the images’ attributes to obtain the attributes
for a class. For this dataset, we utilize the author-provided
17, 032-dimensional features for each image which include
HOG, color histograms, self similarity, and so on. The statis-
tics of three benchmark datasets are summarized in Table 2.

Following the settings in active learning (Chattopadhyay
et al. 2013), we equally split the target domain samples into
two parts. We use one part to train classifiers with active
learning, i.e., Dtr

t . And the other part is the unseen test set,
i.e., Dte

t . The labeled source domain samples form Ds. All
experiments mentioned below share the same train/test split.

Baselines As there is no work for cross-class transfer ac-
tive learning before, we compare our method to two classi-
cal methods. The first one is random sampling (RD) which
selects samples randomly from unlabeled data for human
labeling. The second is uncertainty sampling (US) (Joshi,
Porikli, and Papanikolopoulos 2009) which selects the sam-
ples that the current classifiers are most uncertain about. For
these two methods, we use Liblinear SVM (Fan et al. 2008)
as the base classifier. Besides, we also select a state-of-the-
art attribute-based zero-shot learning method (AZ) (Fu et al.
2014) as baseline. In fact, because it adopts the two-step s-
trategy, it is unclear how to combine it with active learning.
Therefore we just report the zero-shot learning result of AZ.
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Figure 2: Classification accuracy w.r.t. the number of iterations.

Implementations For all active learning methods, we se-
lect 10, 12, and 10 unlabeled samples for human labeling for
AwA, aPY, and SUN datasets respectively in each iteration,
i.e., each class has one sample in average. In each iteration,
we will perform sampling, labeling and retraining models.
The performance is evaluated by the classification accuracy
on the unseen test data Dte

t after retraining in each iteration.
There are some parameters to determine for different

methods. For RD and US, we need to determine the parame-
terC for SVM classifier. Here, we use the labeled source do-
main samples to perform cross-validation to choose a proper
value for C, and the candidate set is {0.01, 0.1, 1, 10, 100}.
For our method, we need to determine the hyper parame-
ters α and β. In this paper we propose to perform k-fold
cross-validation as follows. We split equally the source do-
main classes into k parts. In each fold, we use 1 part as the
target domain and the other k − 1 parts as the source do-
main. Because they are fully labeled, we can simulate the
test procedure and evaluate our method under different pa-
rameter settings. Then the best setting is utilized for final
test. Specifically, we set k = 4, 4, and 10 for AwA, aPY
and SUN respectively, and the values of α and β are chosen
from {0.01, 0.1, 1, 10, 100}. After the cross-validation, we
use the best model for initialization (line 1) in Algorithm 1.

In RD and US, we need to train the multi-class SVM clas-
sifier, where at least one sample for each class is required. To
ensure this, the initial set (in the first iteration) will be ran-
domly re-generated unless there is one sample for each class.
However, this is too demanding when there are a lot of class-
es. Fortunately, our method can avoid this problem, because
the initial model is trained on the source domain and it does
not need any labeled samples for the target domain classes.

Results
The classification accuracy curves w.r.t. the number of iter-
ations on three datasets of different methods are plotted in
Figure 2. We can observe that our method significantly out-
performs the baseline methods and can achieve satisfactory
performance with very few labeled data in target domain,
and we have some important observations from the results.

Firstly, the cross-class transfer learning methods (AZ and
ours) outperform traditional active learning methods (RD
and US) when the labeled samples in target domain are ex-

Table 3: The #iterations to achieve 80% accuracy.

#Iterations AwA aPY SUN
RD 6 5 > 10
US 5 4 > 10

Ours 2 1 4

tremely insufficient, e.g., fewer than 20. This result indicates
that using knowledge from different but related classes helps
to train accurate classifiers with insufficient labeled samples.

Secondly, we can observe that US and our method per-
form better than RD and AZ when we increase the num-
ber of labeled samples. This result demonstrates that the ac-
tive learning can lead to satisfactory performance with just
a few labeled samples via uncertainty sampling. Because of
the two-step strategy in AZ, it is difficult to combine it with
active learning. Hence the attribute-based zero-shot learning
methods fail to make use of the advantage of active learning.

Thirdly, our method is much superior to US and RD with
very few labeled samples and performs better with more la-
beled data, which demonstrates that it can not only effec-
tively transfer knowledge from other classes but also benefit
from active learning. Therefore, our method can significant-
ly reduce the labeling efforts. Besides, in Table 3, we present
the number of iterations each method needs to achieve 80%
accuracy for multi-class classification. We can observe that
our method can save 60%, 75%, and 60% labeling efforts on
three datasets respectively, which validates its effectiveness.

Conclusion
In this paper, we investigate a challenging problem, cross-
class transfer active learning. We propose a novel method
that utilizes the attribute representation as the seed parame-
ters to directly generate the classifier parameters for a class
via a generating function. Based on the classifier, we can
perform uncertainty sampling for active learning. A join-
t learning algorithm is proposed to take both source domain
and target domain, cross-class knowledge transfer and active
learning into account. We carried out experiments on three
datasets. The results show that our method can significantly
outperform baselines and markedly reduce labeling efforts.



Acknowledgements
This research was supported by the National Natural Science
Foundation of China (Grant No.61271394 and 61571269)
and the National Basic Research Project of China (Grant No.
2015CB352300). At last, the authors would like to sincerely
thank the reviewers for their valuable comments and advice.

References
Chattopadhyay, R.; Fan, W.; Davidson, I.; Panchanathan, S.;
and Ye, J. 2013. Joint transfer and batch-mode active learn-
ing. In Proceedings of the 30th International Conference on
Machine Learning, 253–261.
Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.;
Tzeng, E.; and Darrell, T. 2014. Decaf: A deep convolution-
al activation feature for generic visual recognition. In Pro-
ceedings of the 31th International Conference on Machine
Learning, 647–655.
Fan, R.; Chang, K.; Hsieh, C.; Wang, X.; and Lin, C. 2008.
LIBLINEAR: A library for large linear classification. Jour-
nal of Machine Learning Research 9:1871–1874.
Farhadi, A.; Endres, I.; Hoiem, D.; and Forsyth, D. A. 2009.
Describing objects by their attributes. In 2009 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, 1778–1785.
Fu, Y.; Hospedales, T. M.; Xiang, T.; Fu, Z.; and Gong,
S. 2014. Transductive multi-view embedding for zero-shot
recognition and annotation. In Computer Vision - ECCV
2014 - 13th European Conference, 584–599.
Huang, E. H.; Socher, R.; Manning, C. D.; and Ng, A. Y.
2012. Improving word representations via global context
and multiple word prototypes. In The 50th Annual Meeting
of the Association for Computational Linguistics, 873–882.
Jayaraman, D., and Grauman, K. 2014. Zero-shot recog-
nition with unreliable attributes. In Annual Conference on
Neural Information Processing Systems 2014, 3464–3472.
Joshi, A. J.; Porikli, F.; and Papanikolopoulos, N. 2009.
Multi-class active learning for image classification. In IEEE
Conference on Computer Vision and Pattern Recognition,
2372–2379.
Lampert, C. H.; Nickisch, H.; and Harmeling, S. 2014.
Attribute-based classification for zero-shot visual objec-
t categorization. IEEE Trans. Pattern Anal. Mach. Intell.
36(3):453–465.
Li, L.; Jin, X.; Pan, S. J.; and Sun, J. 2012. Multi-domain
active learning for text classification. In The 18th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 1086–1094.
Li, S.; Xue, Y.; Wang, Z.; and Zhou, G. 2013. Active
learning for cross-domain sentiment classification. In IJCAI
2013, Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence.
Long, M.; Wang, J.; Ding, G.; Sun, J.; and Yu, P. S. 2013.
Transfer feature learning with joint distribution adaptation.
In IEEE International Conference on Computer Vision,
2200–2207.

Long, M.; Wang, J.; Ding, G.; Pan, S. J.; and Yu, P. S. 2014.
Adaptation regularization: A general framework for transfer
learning. IEEE Trans. Knowl. Data Eng. 26(5):1076–1089.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
CoRR abs/1301.3781.
Norouzi, M.; Mikolov, T.; Bengio, S.; Singer, Y.; Shlens, J.;
Frome, A.; Corrado, G.; and Dean, J. 2013. Zero-shot learn-
ing by convex combination of semantic embeddings. CoRR
abs/1312.5650.
Pan, S. J., and Yang, Q. 2010. A survey on transfer learning.
IEEE Trans. Knowl. Data Eng. 22(10):1345–1359.
Patterson, G., and Hays, J. 2012. SUN attribute database:
Discovering, annotating, and recognizing scene attributes.
In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, 2751–2758.
Rohrbach, M.; Ebert, S.; and Schiele, B. 2013. Transfer
learning in a transductive setting. In 27th Annual Conference
on Neural Information Processing Systems 2013, 46–54.
Settles, B. 2009. Active learning literature survey. Computer
Sciences Technical Report 1648, University of Wisconsin–
Madison.
Shi, X.; Fan, W.; and Ren, J. 2008. Actively transfer domain
knowledge. In Machine Learning and Knowledge Discovery
in Databases, European Conference, 342–357.
Socher, R.; Ganjoo, M.; Manning, C. D.; and Ng, A. Y. 2013.
Zero-shot learning through cross-modal transfer. In 27th An-
nual Conference on Neural Information Processing Systems
2013, 935–943.
Tong, S., and Koller, D. 2001. Support vector machine active
learning with applications to text classification. Journal of
Machine Learning Research 2:45–66.
Turney, P. D., and Pantel, P. 2010. From frequency to mean-
ing: Vector space models of semantics. J. Artif. Intell. Res.
(JAIR) 37:141–188.
Yu, F. X.; Cao, L.; Feris, R. S.; Smith, J. R.; and Chang, S.
2013. Designing category-level attributes for discriminative
visual recognition. In 2013 IEEE Conference on Computer
Vision and Pattern Recognition, 771–778.
Zhao, L.; Pan, S. J.; Xiang, E. W.; Zhong, E.; Lu, Z.; and
Yang, Q. 2013. Active transfer learning for cross-system
recommendation. In Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence.
Zhu, X., and Goldberg, A. B. 2009. Introduction to Semi-
Supervised Learning. Synthesis Lectures on Artificial In-
telligence and Machine Learning. Morgan & Claypool Pub-
lishers.
Zhuang, H.; Tang, J.; Tang, W.; Lou, T.; Chin, A.; and Wang,
X. 2012. Actively learning to infer social ties. Data Min.
Knowl. Discov. 25(2):270–297.


